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Transmission of water waves through small apertures 
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Department of Mathematics, University of Adelaide 

(Received 21 January 1969) 

A method of solution is proposed for flows through small apertures in otherwise 
impermeable barriers. This method, which is an application of the method of 
matched asymptotic expansions, is used to solve a specific water-wave problem, 
yielding an approximate formula for the transmission coefficient. 

1. Introduction 
The specific problem to be studied here concerns the transmission of small 

amplitude water waves through a narrow horizontal slit in a vertical wall. The 
fluid is taken to be infinitely deep and inviscid, the wall is infinitesimally thin 
and impermeable apart from the slit, and the free surface condition is linearized. 
In  particular, no account is taken of real-fluid effects a t  the sharp edges of the 
slit. 

An exact ‘solution ’ of the above classical two-dimensional water-wave problem 
is in principle available from the work of Lewin (1963) (see also Mei 1966). These 
treatments reduce problems involving thin vertical barriers of a general nature 
to Hilbert problems, as discussed at length by Muskhelishvili (1946). However, 
specialization of the exact formulae to this particular case of a single slit in an 
infinite wall presents formidable analytical and computational problems and no 
comparisons have yet been made with the simple approximate results to be 
presented here. 

The approximation to be made here is that the width of the slit is small com- 
pared with the other significant length scales of the problem, namely the depth 
of submersion of the slit and the wavelength of the incident waves. The method 
of matched asymptotic expansions (Van Dyke 1964) is used, in an abbreviated 
semi-intuitive manner, to construct inner and outer approximations to the flow, 
from which the transmission coefficient is readily obtained. In  fact the main 
reason for presenting this work is to illustrate this method of approach, although 
there may be practical applications (especially of some extended work to be 
suggested later) to breakwater or other engineering problems. 

Some essentials of the present approach are contained in Rayleigh’s (e.g. 
1897) work ondiffraction of sound waves through small apertures (see also Lamb, 
1932, p. 532). It is interesting to note that Rayleigh was already thinking in such 
terms last century, even though he did not use the formal language or apparatus 
of ‘matched asymptotic expansions’. 

For instance, in his 1897 paper, Rayleigh used the idea that, in the neighbour- 
hood of the aperture, the flow is purely local without far-field influence apart from 

5 F L M  49 



66 E. 0. Tuck: 
the over-all scale of velocities. Indeed, in the acoustic case even the field equation 
changes in the inner region from the wave equation to Laplace’s equation. 
This inner solution then ‘matches’ an outer solution which looks just like an 
acoustic source situated at  the position of the (infinitesimal) aperture. A similar 
understanding of the flow situation is essential to the present work, with the 
addition of some important points of detail. 

One of these points of detail concerns the fact that although the inner flow 
appears not to interact with the outer flow, the same cannot be said for the inner 
velocity potentiaH. Thus the inner potential (both in the water-wave and acoustic 
contexts) is a solution of Laplace’s equation for flow through an aperture in a 
wall of infinite extent, This flow must be source-like at a great distance to the 
right of the wall, and sink-like at  a great distance to the left. But if (for example) 
the left-ward limit of the velocity potential is 

6 --f logr (1.1) 

( r  being distance from the aperture), then the right-ward limit is not 

but rather 
4 +-logr, 

$+-logr+c, 

where c is a unique constant for the given aperture geometry. In  fact cis equal to 
2 log $a in the present case where 2a is the slit width, but more generally one may 
consider c to be a known or easily computed property of the aperture geometry in 
cases where the aperture is other than a sharp-edged slit in an infinitesimally thin 
wall. 

When matching of inner and outer solutions takes place, the influence of this 
constant c is felt directly in the outer region, and its value determines the value of 
the transmission coefficient. It might be considered surprising that an additive 
constant in a velocity potential should ever be significant, since the potential is 
generally used only in differentiated form. However, in the present unsteady flow, 
there is an effect via the free-surface boundary condition ( 2 . 1 ) ,  which involves 
time as well as space derivatives of 4. Newman (1969)  has found it necessary to 
use a ‘ constant’ analogous to c in solving a slender-body cross-flow problem; in 
his case the effect is felt because his c can depend on the co-ordinate normal to 
the cross-flow plane. On the other hand, such an effect would seem to be absent 
from the acoustic problems treated by Rayleigh (1897) .  

2. Formulation of the problem 
The flow situation is as sketched in figure 1. Fluid velocity is expressed as the 

gradient of a potential $(x, y, t )  satisfying Laplace’s equation in y < 0 and the 
linearized free-surface condition. 

g a+py + a24lat2 = 0, (2 .1 )  

a#@ = 0 on z = 0, Jy+hl > a ,  (2.2) 

on y = 0. There is no flow across a wall occupying most of the plane x = 0, i.e. 

where h is the depth of the centre of the slit and 2a its width. 
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The boundary conditions at infinity state that there is an incident wave of 
&xed amplitude from the left, together with outgoing waves (reflected to the left, 
transmitted to the right) whose magnitudes are definite (determinable) fractions 
of the incident amplitude. In  mathematical terms, we suppose that as x + - 00, 

(2.3) $(x, y, t )  + 9 [ A ,  exp ( - im + id) +PA, exp ( - ~ K Z  - id)], 
and as x -+ +m, 

where x = x + iy, K = u2/g, A, is an arbitrary (fixed) complex constant, and p, T 
are complex constants to be determined. It is common to specify A, = 1, and this 
can be done without loss of generality; however, we shall make a different choice. 
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(0, -h+u) 
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FIGURE 1 

The quantities p and 7 are of course the reflexion and transmission coefficients in 
complex form. Consistent with the notation in (2.3) and (2.4) we shall adopt an 
analytic complex potential& t ) ,  where q5 = 9f. 

3. The outer problem 
Clearly if the slit is narrow, i.e. 2a/h is small, the effect of the slit, as seen by an 

observer on the right side of the wall, will be as if the slit is a source of fluid of oscil- 
lating strength under a free surface. At the same time an observer on the left side 
will see a sink (i.e. source of opposite strength), the magnitude of the singularity 
strength being the same, by continuity. Giving mathematical expression to 
this idea, we write on the right side x 2 0, 
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where 
exp ( - ik(z - ih)) 

P(z,t) = -log--- [in :::: k - K  

- exp (- ~ K ( Z  - ih)) sin at (3.2) 

(Wehausen & Laitone 1960, p. 481; the integral takes its Cauchy principalvalue). 
I n  choosing this particular form we have made an arbitrary assumption about the 
magnitude (unity) and phase of the oscillating source strength. This is entirely 
equivalent to an a priori choice of the t r a n s m i t t e d  amplitude i-A, in (2.4), and 
costs us nothing in the generality of the final result. Specifically, we observe that, 
asx-f fco,  

so that, in the notation of (2.4), we have chosen 

P(x, t )  -+ k i exp ( - ~ K ( Z  - ih) i- id), (3.3) 

rAI = ie-Kh. (3.4) 

On the other hand, the flow on the left side x 6 0 will be represented by 

f = - F(z ,  t )  + ( A  cos at + B sin at) exp ( - ~ K ( Z  - ih)), (3.5) 

where A and B are real constants, to be determined. Note that P(z, t )  itself is 
defined for all x, and represents outgoing waves on both sides of the wall, on ac- 
count of the asymptotic representation (3.3). Furthermore, it generates a flow 
which is symmetric in x and hence satisfies (2.2) for all y p - h. The representa- 
tion (3.5) contains a term -P, which gives the correct singular behaviour at 
z =  -ih, but represents only outgoing (i.e. to the left) waves. The extra terms 
A ,  B, constitute standing waves which satisfy ( 2 . 2 )  if A ,  B are real, and which 
can be split into incident and reflected contributions. 

Thus, a,s x -f - 00, we have 

Again, in the notation of (2.3), we identify 

so that the reflexion coefficient is 

and from (3.4) the transmission coefficient is 

r = i / ( F + s ) .  A B  
(3.10) 
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The problem is solved if we can find A ,  B, but these constants can not be deter- 
mined from the outer problem alone. To determine A ,  B, we must look closer into 
the details of the flow near the slit. I n  order to prepare the ground for this, let us 
first look at the behaviour of the outer solution near the (relatively!) infinitesimal 
aperture at  z = -ih. This behaviour is immediate from the definitions, and we 
have 

(3.11) 

a.s z -+ 0, - ih, and 
(3.12) 

f(z,t) +- ( ) l o g ( z + i h ) + C - ( t )  cos at 

as z s 0- - ih, where 

‘ J m C d k ]  cosat-e-zKhsincrt (3.13) 
71 0 k - K  

and CJt) = - C+(t) + e-2Kh(A cos crt + B sin at). (3.14) 

Equations (3.11), (3.12), merely express the fact that, near the aperture, the solu- 
tion looks like a simple source-sink pair in an infinite fluid, of oscillating strength 
cos crt. The expressions C,, C- are additive ‘constants’ (with respect to space) 
which carry within them into the inner problem the whole of the wave-like nature 
of the outer problem - hence the apparent complexity of the defining equation 
(3.13). 

4. The inner problem 
Since the slit is narrow and is submerged to a distance h large compared with 

its width 2a, the flow in the immediate neighbourhood of the slit will be as if the 
free surface were not present. In  fact it will be exactly the usual potential flow 
through a finite slit in an infinite wall, the fluid extending to infinity in all 
directions, as in figure 2. 

The solution of the inner problem is readily obtained by use of a Joukowski 
transformation of the form 

(4.1) 

which maps the whole cut z plane onto the upper half 6 plane, with correspond- 
ence between points and regions as shown in figure 3. A solution which represents 
a source of strength m at the origin of the 5 plane is 

z + i h  = - $ia(Y+ C-l), 

f = (mpn) log Y+ c, (4.2) 

where C is any constant. This solution does in fact provide a flow such as that 
sketched in figure 2 (m > 0 ) ,  as we see by looking at the properties of the mapping 
(4.1) for both large and small I <I. 

First, as 1C1-+ 00, we obtain the flow behaviour in the neighbourhood of the 
points V ~ J ?  in both planes, i.e. the limit 2 -+ +00 in the z plane, or the right- 
hand semi-circle at infinity. But then from (4.1) 

2 +ih --f - Big 
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so that 
m 

27r 

a source-like flow away from the point z = -ih. Similarly, as 1" -+ 0, we obtain 
the neighbourhood of =&'S%', i.e. the limit x -+ - 00 or the left-hand semi-circle 

z + ih --f - ;tia/[ at infinity, when 

so that I [ :  c--log( -+;a) , 
m 

f+-log@+&)+ 27r 

a sink-like flow toward z = - ih. 

FIGURE 2 
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It is important to notice that the constant terms in (4.3) and (4.4) are different. 
While it is true to say that we can if we wish ignore any one additive constant 
(such as C) in solving a Neumann boundary-value problem, it is not true that the 
additive constants in two different expansions of the same flow are the same. 
For instance, we could choose C = (427r) log ( - iia) whereupon the left-side 
flow is just f -+ (m/27r)log(z+ih). However, the right-side flow is not just 
f-+ - (m/27r) log ( x  + ih), but needs to include the constant term (m/7r) log ( - &a). 

5. Matching 
Intuitively the matching principle simply states that the inner region seen 

from the outside looks like the other region seen from the inside. Let us imagine 
a long-sighted giant of height about h, who can see only what is going on at that 
length scale. Then if this giant attempts to focus his eyes on the aperture near 
z = -ih he will see only a blurred source-like picture. On the other hand, a 
short-sighted midget of height about a, sitting in the opening will be able to see 
only the detailed flow through the opening. At the extreme outer edge of his 
vision will also be a blurred source-like flow, and it is important that these two 
blurred pictures are identical. 

In  mathematical terms, equations (3.11) and (3.12) provide the inner behaviour 
of the outer solution, whereas (4.3) and (4.4) give the outer behaviour of the inner 
solution, and matching asserts that these expressions must be identical term by 
term. This is achieved easily enough by taking 

m = - cosut, 

C+ = C + (m/2n) log ( - &a), 

C- = C - (~4271) log ( -*<a). and 
Thus, on subtraction, 

C+ - C .  = - (cos at/n) log ( - Qia). 

C ,  + C- = e-zKh(A cos a t  + B sin at). 
Butfrom (3.14), 

Thus 

Since C+ is a known combination (3.13) of cos at and sin ut, equation (5.6) furnishes 
all the information we need to find A ,  B. 

2C+ = cos at  + B sin at) - (cos d/m) log ( - &ia). (5.6) 

Specifically, on equating coefficients of cos at, sin at, we have 

(5.7) B = - 2  

and 

i.e. 
e2Kh a 2 -. 

A = -log (-) 4h +;&(2~h), 
7r 

where Z(W) = j" Cdu (5.9) --mu 

is an exponential integral (Jahnke & Emde 1945, p. 2). 
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6. The transmission coefficient 
Since we have now found the coefficients A ,  B, we can immediately write down 

from (3.9) and (3.10) the reflexion coefficient p and transmission coefficient r .  
Let us concentrate on the latter, in view of its obvious interest in this particular 
problem as a measure of the permeability of the wall. In  any case, the well-known 
relationship 

(readily verifiable in this particular case) enables us to obtain at least the magni- 
tude of p from that of r .  

Using (3.10), (5.7) and (5.8) we obtain 

7 = eZKh 
i/(cloga+iEt a 1 -. ( 2 ~ h ) + i  

The magnitude of r is of greatest interest, and we have 

l2 eZKh a 1 -. 
2n 4h n 
--log-++E~o(2~h) . 

This expression can be considered to be a function of two dimensionless quantities, 
one the ratio 2a/h of width to submersion of the aperture (assumed small), and 
the other the ratio h/h = ~ h / 2 n  between depth of aperture and the wavelength 
h = 2 n / ~  of the incident wave. The latter ratio has been assumed neither small 
nor large in the analysis. 

Clearly as the slit becomes vanishingly narrow, the transmission tends to 
zero as it should, but at a very slow (inverse logarithmic) rate. Thus for fixed K h  
the term in log (a/4h) eventually dominates (6.2) so that -+ 00 and 171 -+ 0. 
On the other hand, for fixed 2a/h, 171 -+ 0 also as K h  -+ 0 or co. Clearly as h/h -+ co, 
the exponential eZKh and exponential integral both tend at  an exponential rate 
to infinity, so that 7 is exponentially small. This we should expect, since the slit 
(of fixed width) is ultimately many wavelengths submerged and sees very little 
of the incident energy. At the other extreme, as h/h -+ 0, the exponential integral 
E(2Kh) becomes logarithmically large, so that r -+ 0 like the inverse of the 
logarithm of 2 ~ h .  Again this is a very slow rate, indicating that much of the 
energy of very long waves gets through even quite narrow slits. 

This is illustrated by figure 4, showing graphs of 1rI2 against hlh for various 
values of 2a/h. The left side of the figure (h/h -+ 0)  corresponds to long waves and 
the right side (h/h -+ 00) to short waves, relative to the submergence h of the slit. 
Maximum transmission of energy occurs at  a wavelength which gets longer as 
the slit width is decreased. At 2a/h = 0.4 as much as 72 yo of the energy is trans- 
mitted at h/h = 0-6; however, it may be that this slit is too wide for the present 
theory to be acceptabIe without reservation. On the other hand, even at 
2alh = 0.05, which would surely qualify as a narrow slit, 40% transmission 
occurs for h/h N 0.02, i.e. for a wave with a length 1000 times the slit width. 

The question of whether or not such high transmission would be achieved in 
practice (in the presence of separation and energy dissipation at  the edges of the 
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slit, and other real-fluid effects) is beyond the scope of the present paper. It is 
worthy of note, however, that substantial transmission of long waves through 
small holes is not uncommon in classical water-wave theory. For instance, we 
caninferfromtheresultsofDean (1945,~. 273) thatasubmergedbarrierextending 
up to only one unit from the water surface would transmit 33 % of the energy of a 
wave 500 units long. Similar conclusions are obtained by Evans (1970) for a 
finite submerged barrier. 
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FIGURE 4 

It would of course be desirable to compare figure 4 with independent estimates 
of the transmission coefficient, particularly with exact values calculated from 
the theory of Lewin (1963) and with suitable experimental measurements. 
Attempts are presently being made to provide both of these comparisons. 

At the same time we should like to generalize the present flow geometry. In  
particular, it is not difficult to modify the shape of the aperture, including effects 
of wall thickness or rounded corners. This is particularly desirable, of course, 
if comparison with experiment is to be made. On the other hand, the exact theory 
of Lewin (1963) can apply only to infinitesimal walls, so that the generalized 
geometries mentioned above will lead to results which cannot be compared with 
any exact theory. Other less obvious generalizations include effects of finite water 
depth or three-dimensional holes; in these cases the outer as well as the inner 
approximation must be modified. 
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